Beta-adrenergic modulation of cardiac ion channels. Differential temperature sensitivity of potassium and calcium currents

نویسندگان

  • K B Walsh
  • T B Begenisich
  • R S Kass
چکیده

beta-Adrenergic stimulation of ventricular heart cells results in the enhancement of two important ion currents that regulate the plateau phase of the action potential: the delayed rectifier potassium channel current (IK) and L-type calcium channel current (ICa). The temperature dependence of beta-adrenergic modulation of these two currents was examined in patch-clamped guinea pig ventricular myocytes at various steps in the beta-receptor/cyclic AMP-dependent protein kinase pathway. External applications of isoproterenol and forskolin were used to activate the beta-receptor and the enzyme adenylate cyclase, respectively. Internal dialysis of cyclic 3',5'-adenosine monophosphate (cAMP) or the catalytic subunit of cAMP-dependent protein kinase (CS), as well as the external addition of 8-chlorphenylthio cAMP (CPT-cAMP) was applied to increase intracellular levels of cAMP and CS. Isoproterenol-mediated increases in IK, but not ICa, were found to be very temperature dependent over the range of 20-37 degrees C. At room temperature (20-22 degrees C) isoproterenol produced a large (threefold) enhancement of ICa but had no effect on IK. In contrast, at warmer temperatures (30-37 degrees C) both currents increased in the presence of this agonist and the kinetics of IK were slowed at -30 mV. A similar temperature sensitivity also existed after exposure to forskolin, CPT-cAMP, cAMP, and CS, suggesting that this temperature sensitivity of IK may arise at the channel protein level. Modulation of IK during each of these interventions was accompanied by a slowing in IK kinetics. Thus, regulation of cardiac potassium channels but not calcium channels involves a temperature-dependent step that occurs after activation of the catalytic subunit of cAMP-dependent protein kinase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes

The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac c...

متن کامل

How is SR calcium release in muscle modulated by PIP ( 4 , 5 ) 2 ?

Ion channels are embedded in the lipid bilayer of cell membranes; therefore, it is not surprising that their functions can be modulated by membrane phospholipids and their metabolites. Over the last decade, a number of ion channels—including multiple types of potassium channels, voltage-gated calcium channels, and transient receptor potential channels—have been shown to be modulated by phosphol...

متن کامل

How is SR calcium release in muscle modulated by PIP ( 4 , 5 ) 2 ? Bernhard

Ion channels are embedded in the lipid bilayer of cell membranes; therefore, it is not surprising that their functions can be modulated by membrane phospholipids and their metabolites. Over the last decade, a number of ion channels—including multiple types of potassium channels, voltage-gated calcium channels, and transient receptor potential channels—have been shown to be modulated by phosphol...

متن کامل

L-type calcium channels, potassium channels, and novel nonspecific cation channels in a clonal muscle cell line derived from embryonic rat ventricle.

We have characterized the membrane currents in the H9c2 clonal muscle cell line derived from embryonic rat ventricle. These cells, established by selective serial passage and clonal proliferation, have been found by Hescheler and coworkers to express dihydropyridine-sensitive calcium channels that respond to beta-adrenergic stimulation. We have investigated the macroscopic and elementary curren...

متن کامل

How is SR calcium release in muscle modulated by PIP(4,5)2?

Ion channels are embedded in the lipid bilayer of cell membranes; therefore, it is not surprising that their functions can be modulated by membrane phospholipids and their metabolites. Over the last decade, a number of ion channels—including multiple types of potassium channels, voltage-gated calcium channels, and transient receptor potential channels—have been shown to be modulated by phosphol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 93  شماره 

صفحات  -

تاریخ انتشار 1989